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I'REFACI .

Tin- employment nl' the la\\sand principles t' d \ namics in

cu^ing the movements of tin- parts of an aerial medium caused

by tin- action of a local force impressed upon them, or ly their

..\vn inherent elastic force causing them to Ho\\ to\\ ards a total

or partial vacuum, has hcrct<ln|-c hccn tliniiiflit l\ mathcmat i-

cian^ Ic In- attended with ^reat ditHcultio : i\ indeed that

l't-\\ atteinpt> \\ei-e made tnsiinimuiit tliein. and none that \\en-

attended \\ith full and complete >ucce.. Hence many prollciii>

in arro(lyiiainir>. that \\cre of ^reat interest \ -ricuce ami tin-

arts, remaine<l unsolved. Some \eai'- ^ince I became deeply
intere>ted. in an attempt to sol\e one of the-e prolJi-iii^. and

after much thought siici-eeded in de\ isini: a met hod \vln-n-hya

satisfactory solution \\ as accomplished. Perceiving that the

same method, with suitable modifications, \va> applicable to flic

solution of other problems, I uave my thoughts to others t'mm

time to time 88 ] found leisui-e amid theacti\c pur>uit> of life;

and tlu- results of the>e invoti
t
u:at iojis, as they \\ere respectively

rea<-hed. \vcri- published in the then cm-rent numbers of the

Ainerimtn Journal of Science.

Believing that t he met hods employed in thoM- in\ e>t i^at ion>

mi;ht be employed \vith success in solving (ther important

jn-obk-ins. and desiring to bring this field of research to tin-

attention of physicists, I recently prepared another paper per-

taining to this branch of physics and offered it for publication
in the Journal of Science ; but the editors, finding in it positions

and conclusions which conflicted with their pre-conceived

opinions; and not being disposed to publish that which they
were not ready to endorse, declined the article.

Under these circumstances it was decided to print the paper,

prefixing to it the articles that had been published in the

Journal of Science pertaining to aerodynamics, arranged in the

order of their respective dates; and in this collective, but some-

what disjointed form, to present them as a contribution toward

a more full development of this interesting and important
branch of Physics.





ARTICLE I

A Throrrt'trnl /)rfrnnht(lffOi/ of ll/r Ltur irlitrh <!<,

f/tf i'loir of l\ltit'n' /'/// /Vx thrntifili ()riji<

TIIK subject announced at the head of this article, is not only
interesting considered >inij)ly as a subject of scientific inquiry,
but it is also a matter of practical importance in its relations to

several branches of mechanism. Among these maybe instanced,

as perhaps first in importance, the bearing of the subject upon
the construction of the steam engine. The M/e of the pipes and

valves which conduct the steam to and from the working cylin-

der, should be properly adjusted to the si/.e and velocity of the

piston. In general, the larger these pipes and valves the better,

so far as respects the power of the engine. But there are incon-

veniences attendant on making them large; and in order to

make a due compromise between the inconvenience that may be

incurred on the one hand and the amount of power that may be

sacrificed on the other, it becomes necessary to understand cor-

rectly the law which governs the flow of elastic fluids through
orifices. Treatises on the dynamics of fluids have not omitted to

give rules for the determination of such questions; but it will be

seen in the course of this article that those rules are very defec-

tive.

If the velocity with which a fluid flows through an orifice from

one vessel into another be represented by V. the density under

which it passes the orifice by D, and the area of the orifice by S.

then the product YDS is the measure of the quantity of fluid

discharged in a given time. It is an established law in the

dynamics of fluids, that the velocity of the flow is directly as the

* Published A.. D. 1848, in the American Journal of Science, second series, vol.

v, page 78.
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square root of the pressure and inversely as the square root of

the density. If, then, the efficient pressure which produces this

flow be represented by P, the general law expressed by symbols

will be,

The above expression is in accordance with the received theory,

and properly understood it is correct and applicable to all fluids,

elastic as well as inelastic. But it must be observed that D in

this expression must in all cases represent the density under

which the fluid passes the orifice.

In all the treatises on the dynamics of fluids that I have exam-

ined, the quantity D in the foregoing expression represents the

density of the fluid in the discharging vessel: it being assumed

that the fluid passes the orifice without change of density. This

assumption is correct so far as respects inelastic fluids, but as

respects elastic fluids it is far otherwise. A particle cannot even

begin to approach the orifice without a change of density. Sur-

rounded by other particles, it will not begin to move until the

pressure before it becomes less than the pressure behind it. If

the pressure before it is less than the pressure behind it, then the

density there is less also, and consequently the density of the

particle itself is diminished, for that must be intermediate be-

tween the density before and behind it; and as it cannot begin
to move without a change of density, so for the same reasons its

motion cannot be accelerated without a further change of density.

Thus for every increment of its velocity in its approach to the

orifice, there must be a corresponding decrement of its density.

Hence it is evident that the fluid passes the orifice under a den-

sity less than the density in the discharging vessel.

Again, there is an error in the received theory, in considering

the efficient pressure which causes the discharge (represented by
P in the above expression), as equal in all cases to the difference

of pressure in the two vessels. The true amount which is to be

deducted from the pressure in the discharging vessel, in order to

find the efficient pressure that produces the discharge, is the

elastic force that is due to the density which the fluid has in its

passage through the orifice; for it is obvious that that alone

reacts against the pressure in the discharging vessel. From this

consideration also we may arrive at the same conclusion as was

deduced in the last paragraph, viz: that the fluid must pass the



orifice with a diminished den-it \ ; f.,r otherwise tin- elastic force

of tin- lluid in tin- <>rili<-<- w<>ald \n- a perfect OOUBtefpoiM to the

pressure, :ml lli-n- r.mld he IK. fl,,\\.

I'Yom what precede- it will In- apparent that in t he applicat i<n

of the general expression,

t> tin- cast- of ela>tic Hind-. the density <>f tin- fluid in tin- orifice,

represented hy \>, is an unknown (jiiantity, having :< value -mn--

\\hel-e illtei-lllediate hetWeell cij.lier and t he delimit y >!' the fluid

in the ilischarrin : als<. tliat tlie etlicient |.rrv>un- uhidi

produees the disrliar^r, represented l>y I*, i>- an unknown <juantitv
whose value i> dejiendent on that of I). \Ve \\ill now proeeed lo

elicit a general rule for the detei'iuinat ion of the value of I) and

I* ill every ease that can occur.

In the annexed figure let J le the di*-

charuinn' vessel containiiiLC Huid \\ ho>e

density is .J, and let <l he the i'ecei\ iii^

el, which for the present we will

consider a vacuum. Let the smallest

place in the passage leading from one to

the other he the orifice, and let its area

he S, and let I) represent the unknown density with which the

fluid passes the orifice. Since the pressure is as the density, the

density may he employed to express the pressure. Then it fol-

lows from the preceding observations that the efficient pressure
which produces the discharge is J I). Since the velocity will

he directly as the square root of the pressure and inversely as

the square root of the density, we have,

V

Multiplying this expression hy I) and reducing, we have.

VI) x

Now if we conceive several sections to he made across the

passage at different points on each side of the orifice, and if tin-

areas of these sections are respectively S
, S". etc., the velocities

of the fluid in them V, V '. etc. and the densities D', D", etc.

V'D'S', V"D"S", etc. are the measures of the quantities of fluid

that pass through thoe sections respectively in a given time.



But when the current is established, the same quantity flows

through each in a given time. Therefore V'D'S':=V"D"S"

=VDS. Now VDS being a constant quantity, if each of the

factors vary, VD will be a maximum when S is a minimum.

But S is a minimum at the orifice; and therefore YD is a maxi-

mum at the orifice. But we have before foundVD x \/(zfD D 2
) ;

and therefore when VD is a maximum \/(z7D D 2
)
must likewise

be a maximum. Now, when \/(Z/D D 2
)

is a maximum D = .

Hence, when the discharge is into a vacuum, the density of the

fluid at the orifice is equal to half the density in the discharging

vessel.

For convenience in the illustration, we have made the passage

from one vessel to the other in the figure, divergent each way
from the orifice; but our reasoning would obviously be equally

applicable if the orifice opened directly from one vessel into the

other, without the intervention of the divergent tubes.

Let us now inquire, what will be the value of D when the

receiving vessel contains fluid of any density less than that in

the discharging vessel.

Let the density in the receiving vessel be d. Then d is a limit

beyond which the fluid cannot expand, either before or after it

passes the orifice; so that D can never be less that d. As in the

preceding case \/(JD D 2
)
was the maximum for all the values

that can be assigned from cipher to /7, so in this case, and for

the same reasons, \/(^D D 2
)
must be the maximum for all the

values of D that can be assigned between d and . But we

found in the other case that the maximum occurs when D = .

If, then, this value of D is assignable between d and J, the

maximum must in this case also occur when D = . But this

value of D will always be assignable between d and J, if d be

not greater than . Therefore if d be any quantity not greater

A A
than

,
D will be equal to . In other words, if the density in

the receiving vessel be not greater than half the density in the

discharging vessel, the density in the orifice will be equal to half

the density in the discharging vessel.

Again, from the nature of maxima and minima, it is obvious
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that */(J\> D-) \sill br a iii:ixiiiiiiin \\lu-u. of ;ill tin- \alue^ that

arc assignable t.. l>, that value i- a iirned which differ- lea-t

IV, MII -1 Hence, if ,1 exceed nat I> mu-t have a value

greater than
(

,
t hen \/( J I > I >-

)
\\ ill le a maximum when I ) ha-

the -mall. -I \alue that i- a in'iiaUe to it. N.IW tin- -malle-t

value that is as-ignable t it in this oai i- l> 'A H<-nr-. it the

lcn>it\ in the rTfi\ in_r \e--el exceed liall' the len-ify in the

vessel, the .|en-ity uii'ler \\hieli the tliii., |JMSei the

! the .len-ity in the reeei\ in--

Thu> we have found for the value <>f I ). l>=
^

it' </ i- m.t

H-reater than -; it' otherwise, !) = </. And for the value.,!' I'

J t J
(since P = J-D) we have P = if <l is not ^i-eater than -; if

otherwise', P = J <f.

\ )^s /P
In a]i]i]yin^ the general dynamie law \'I)Sx to the

Case of elastic fluids, the values of I) and P should therefore be

a--i-_rned in accordance with this rule.

We have already remarked that treatises on the dynamic- of

fluids, in applying the above general expression to elastic fluids,

put I) as e<|ual to z/, and P as equal to A d in all cases. This.

as will appear from the above rule, makes D too large in all

cases; and P also too large whenever </ is less than half Z/. In

the ease of a discharge into a vacuum, it makes each of these

quantities double what it should be. In constructing a formula

to express the velocity of the flow into a vacuum, these errors

balance each other; so that in that particular case the result is

the same as if the values of these (plant ities were assigned in

.

accordance with our rule; for by our rule \ x . = 1, and by

the old rule V = 1.

Again, since -: is a constant quantity however A may vary,
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it follows from our rule that the velocity of the flow into a

vacuum is a constant quantity, being the same for every density
in the discharging vessel. The same also results from the old

theory.

But in constructing a formula to express the quantity that will

flow into a vacuum in a given time, the results of the two rules

will diifer widely. For since the rule gives the velocity of the

flow correctly, and at the same time puts its density at double

what it should be, it follows that the old rule makes the quantity

discharged in a given time double what it should be.

Hence it appears that in a steam engine, the valves and pipes

which convey the steam from the working cylinder to the con-

denser, must be of double the size that would be assigned to

them by the old rule in order to discharge the contents of the

working cylinder in a given time, without increased reaction

upon the piston.

It appears from the rule as stated above, for finding the values

of D and P, that tke quantity d, which expresses the density of

the fluid in the receiving vessel, will not enter at all into the

formula which expresses the velocity of the flow, nor into that

which expresses the quantity discharged in a given time, pro-

vided it be equal to, or less than, half the density in the discharg-

ing vessel. Hence it follows that the fluid in the receiving vessel,

if its density does not exceed half the density in the discharging

vessel, will have no effect whatever upon the flow. Consequently
air or steam will rush into a vacuum no faster than into a vessel

containing fluid of half its density. On the contrary, both the

velocity of the flow and the quantity discharged in a given time

will be the same in both cases; and so, also, if the density in the

receiving vessel is any quantity less than half the density in the

discharging vessel, the flow will be the same in velocity, quantity,

and density, as into a vacuum. Accordingly, a vessel containing

steam of a density due to a pressure of ten or any other number

of atmospheres, will empty itself no faster into a vacuum than

into the open air, until in the progress of the discharge, the den-

sity is reduced below that due to the pressure of two atmospheres.

It will be readily seen that these conclusions have an important

bearing upon the construction of the steam engine.



ARTICLE II.

<>J' th< ,/, /// ftll III if o/ ll/r
l',<,i><l<l<tt'i<,n

of Pubt - /'/> i:i<i.t',r

Sn: |x\.\ Ni :\\ io\ in his 1'rincipia. Hook II. prop. 1 r. H, 49,

lias determined the velocity of a pulse, propagated in the atnio-

phcrc, whose intensity differs t'nnn cipher only by a very >inall

quantity; T rather, a< \vc shall see in the courx- of thi- article.

whose intensity is cipher. This velocity lie shows to In- that

\\ hich a l>o<ly woiihl acquire hy fall in LI' uvcr hall' the atmospherical

suhtan^ent (or halt' the height of a homogeneou- atniospl:

and this lie assumes would he the velocity of sound, provided the

atmosphere were perfectly purr and perfectly elastic, Lagrange
and others have since investigated the same case ly different

processes, but with the same result, and have concurred with

Newton in regarding that result as showing the true theoretical

velocity of sound. Both Newton and Lagrange in their respect-

ive solutions of the case assume, in effect, that the velocity of

the pulse is irrespective of its intensity. Newton at one point

(prop, t^, case 1 ), appears to recogni/e the fact that an inm-a-ed

intensity would make a difference, hut thinks that unless the

pulse were "
exceedingly intense," the error would not he sensible.

liut Lagrange says (Mecanique Analytiquej I 'art II. sec. 12, art.

II), "the velocity of the pulse is constant and independent of

the primitive movement, which is continued by experience, as all

sounds strong or weak appear to be propagated with the same

velocity."

It is proposed in this article to show that the velocities of

pulses vary with their intensities, and to determine, in general

* Published A. D. 1818. in (lie Aim-rii-an Journal of Sciouce, second series, vol.

v, p. :;7'j.
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form, the relation which subsists between the velocity and inten-

sity of pulses. This we shall do by solving the general problem
of the velocity of pulses by a new process, which comprehends
the intensity of the pulse as an essential element. Having done

this, we shall see the relation in which the case solved by Newton
stands to the general law; and if we mistake not, it will then be

apparent that the velocity found in that case is not the velocity
of sound, but a limit below which its velocity cannot fall.

A pulse, considered as propagated through a line of particles,

and considered with reference to its physical condition at any
instant of time, consists of a series of contiguous particles in

that line, greater or less in number, which are more dense than

the particles before and behind them on the line, and which are

in motion with some velocity, while the particles before and
behind are at rest and in their natural state of density. This

series of particles, as it advances, encounters successively the

stationary particles, compressing them to the same density, put-

ting them in motion, and thus adds them to the series. In the

mean time, an equal number of the posterior particles of the

series expand, resuming their natural density, and come to rest.

It is obvious that if the propelling force due to the reaction of

the particles expanding from the posterior extremity of the series,

is equal to the retarding force of the particles encountered by
the anterior extremity (as must always be the case if the elasticity

is perfect, and if the action is confined to the particles in the

line), then the pulse will continue to advance indefinitely, and

with a uniform velocity; a velocity however which, as we shall

see, is not independent of the degree of condensation to which

the particles are brought.

Fig. 1.

C D
A I I _-n .

Let C be a point where the density is a maximum in a pulse
which is moving toward B. It is not material to our present

purpose to inquire whether the place of maximum density is a

mere point, or whether it extends over some finite space on the

line AB. In either case, somewhere in advance of C we shall

find particles in every stage of density from the natural to the

maximum state; and these will be arranged in the order of their

density, the more dense being toward C. Each of these particles

will be accelerated so long as the density of the particle behind
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it ix _! -eater than that <!' tin- particle hefon- it. and MO 1m

Consequently, each will ha\e it- maximum veloeity \\heii it

reaclh- Ltfl na\imiim dentils. Th- t (' i- a point \s here

tin- density i- a maximum, it i- liki -\\ 186 a point when- the

which the pul-e -_;i\- -ur.-,- -i \ ,-| \ to all the particle-, i- a

maximum.

I. ct ///// lc the -pace \\hich a particle in it- natural Mat.- OOCU-

"ii the line All, li_uf.
I ami let x// he that which it ncciipie- in

it> im.vt condeii-ed fttate. I.H D he a point in the line AK. in

advance of ( ', u here the part Teh-- an- at n-f, not having vet i'elt

the influence if the approaching pu!0e; :in<l let the two imaginary

points (' and D he conceivc<l t<, move with the -aim- ^elooil

the pulse. Then each travels !<>/ the same >pari- ami

the same numher of particles in a li'iveii time.

while (' move> over a span- i-jiial t that OCCUpie<l hy a particle

in its natural state, it only moves through one particle in it> imt
condensed state; that is t o >ay, while (

'

moves over the >pace /////.

it moves, relatively to the {.article thr<mrl which it J.U^M-X. only
Over n, (

'<'nse<|iiently the particle itself moves in the same time

over a space equal to in*. Hence when ///// represents the velocity
of the pulse, mn represents the final velocity \\hich the pulse

U'ives to every particle through which it pa-

Let H he the atmospherical subtan^eiit ; or t he length of the

column of particles of the natural density whose weight is equal
to the elastic force of a particle in its natural Mate, and let II-j-A

he the length of a similar column whose weight is equal to the

elastic force of a particle at the maximum density. Since the

space occupied hy a particle is inversely as the compressing force,

we have,

inn : fiti : : \\-\-/i : II or itut-{-ifn : *// : : TI-f/< : II ;

at* :#n :: /t ill. Whence 11=
ma

The force which accelerates all the particles iu advance of C\

which have felt the influence of the pulse out have not yet

reached their maximum velocity, is the difference of the elastic

forces which corropoud to the natural and the maximum densi-

ties. This is a constant force, and must evidently he that force

which is competent to n'ive the velocity ///* to all the particle- in
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any space in the time in which the pulse runs over that space.

Let us suppose the pulse runs over the space A. Then the pulse

runs over h in the time in which the difference of those elastic

forces will give to all the particles in h the velocity ms But the

difference of the elastic forces is equal to the weight of all the

particles in //. Therefore the pulse runs over h in the time

in which those particles would in falling by their own weight

acquire the velocity ins.

The time in which a falling body acquires the velocity ins is to

the time in which it would acquire the velocity of the pulse or

mn
t
as ms to mn, and the spaces over which the pulse would run

in these times are as the times and therefore as ms to mn. There-

fore putting S for the space which the pulse would run over

while a falling body would acquire the velocity of the pulse, we

have ms : inn : : h : S. Whence

,

///-s- ///.s ms

But we have before found II = ^i*^. Substituting H for its

ms
value in the preceding equation, we have S = H-j-A. If then

\ve put H-(-A for the velocity of the pulse, the space through

which a body must fall to acquire that velocity will be

In this expression h is to be regarded as the intensity of the

pulse: it being the length of that column of particles which must

be superadded to the height of a homogeneous atmosphere, in

order to produce in the air that degree of increased condensation

which the pulse effects in the particles through which it passes.

If in the expression last found we make h = 0, the expression

becomes . This is the result arrived at by Newton, and which,

as we have already remarked, was regarded by him and is now

generally received as the theoretical formula for the space through
which a body must fall to acquire the velocity of sound. But it

is evident from our demonstration that the velocity due to that

space, instead of being the velocity of any assignable pulse is

simply a limit below which no pulse can be propagated in an

elastic fluid whose subtangent is H.*

* Newton's demonstration of this problem has been regarded by several dis-

tinguished mathematicians as obscure and inconclusive. It commences with the

hypothesis that a particle put in motion by a pulse is accelerated and retarded



i:.

\ plll>e \\hich
prodllCefl

the D "I -Mini HUM produce
real inntinii ill the particle- t hrou_r h uhich it pa e-. In -ndi a

puUe // mn>t ha\e nnn- finite ma-jnit nde. Ni.r -:iu that mag-

nitude he ly an\ nieaiiN tin- -malle-t that i- mipet cut t<. pro-

duce motion in the nrh \\ere th- tact, then the

Blighted impulse '/i\en t<> tin- air l\ a \ihratnry in<\ eineiit ,

\\a\in-_r tlie hand in it. -hould produce the n of

!so|iml. The inteli^'iM if a plll-e \\hieli i- competent t.. produce
that M-n>atinn, will of conne \ar\ \vitli the sen-ihilit \ .f the

e.ir \\hieh i> t. receive it; ami eoiiM-.jnent ! \ tin- nature ,,f the

doefl ii"l alh\v n^ 1.1 ;i--iun any definite iiia-jnit mle to tlie

inininiiin) intensity f >>nnrmix pul-es; hut \\ e kimu l\ e\j.eri-

ence that tlie velocity of tlie ].artide> in which a pul-e origi

niiot he -real in or<ler t< produce the >eii>ation of sound in the

IIKI delicate ear. \Ve also kn\\ that in ihc ca-e of the heavier

xniihK a< tin- report of cannon, the condensat inn T|' the particle-^

in which the puUe ni-i u-inate> i- very intense,

This view nf the suhject may thro\\ ><me li^ht up<>n the

discrepancy het \\eeii the t hi-nivt ic:il velocity nf sound, a> deter-

tnine<l hy Newtnii and others, and its real velocity as found hy

experiment. The velocity according to that theory should he

ahoitt (.U1 feet in a second; varying sliirht ly from tins accord in LT

to the state of the haroineter, t hernioineter, and hygrometei".

( Roberts, 1000

Boyle, . 1200
Theelocitie. U74

meat, by
Flamsteed and Halley, 1142

Florentine Academy 1 1 4s

French Academy ,

;uv ( inline to tlie la\v of the ost-illatin^ pendulum. Gabriel Cramer (see Glasgow
c 1'uii in of NYv.Mon's rriiu-ipia. I5ook II, prop. 48. notes), objects to the result

arrived at ly Xe\vton. that ir !lo\vs from his hypothesis and not from tlie nature

of tilings. To prove this he deduces the same result upon the hypothesis that

tlie panicle U aivii-rat.'d and retarded by a constant force. The fact that

Cramer's hypoth">i< answered just as well for the solution of the problem as

Newton's, aeemfl not a little to have puzzled the editor of the edition of the

I'rim-ipia refern d to. who devotfs several pa-es of notes to the vindication of

Newton's result from its supposed bearing. Hut the enigma is solved when we
Consider that both Newton and Cramer regard the space through which the

])artiele vibrates as an intinitesimal quantiiy. In such ease, evidently it can make
no difference what is assumed as the law of acceleration

;
this being a point at

which all laws coalesce.



16

Newton adopts the smallest of these experimental velocities,

viz: 1142 feet per second, as the true practical velocity of sound;

and to this he reconciles his theory; in part, by a hypothesis that

the air consists, to a certain extent, of solid particles, through
which the pulse is transmitted instantaneously; and in part by
another hypothesis, that the pulse does not give motion to the

foreign matter which the air contains, and so is transmitted so

much the faster through the true air as there is less of it in a

given space. This explanation of the matter has not been sat-

isfactory to those who have followed Newton in investigating

this subject. They have justly thought that such causes might

retard, but could not accelerate the pulse. Various other hy-

potheses have been successively proposed and rejected, and a

vast amount of labor has been expended in the effort to reconcile

theory and practice in this case. Of these hypotheses, we will

mention only that which Laplace is said to have regarded as the

true one, viz: the increased elasticity in the air produced by the

heat evolved by condensation. A little reflection will serve to

show that this cause also may retard, but cannot accelerate the

pulse. In order that the force of the pulse may be maintained

without loss, the propelling force derived from the reexpaii-

sion of the particles must be not less than their retarding force

in being compressed; and in order to this, whatever heat is

evolved during their compression, must be reabsorbed in their

reexpansion. If, then, any time is required either for the evolu-

tion of the heat, or for its absorption, so that the specific heat

of the particle does not instantaneously conform to the change
of density; or if any portion of the beat evolved is radiated and

lost, so as not to be present to be reabsorbed, then the evolution

of heat must retard the pulse. Otherwise it cannot affect the

velocity of its propagation.

In the view of the subject we have taken, it will cease to be

a matter of surprise that the velocity of sound should be found

to be greater than that assigned by Newton's theory; as, also,

that the experimental velocities should be found to differ greatly

among themselves,, however carefully the experiments may have

been tried.

When the velocity of a pulse is given, we may find its intensity

V 2

by the formula h = H. We may find the maximum density,32

V 2

the natural density being 1, by the formula, max. dens. =: =.
32JnL
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\\Y may tind tin- -pact- occiipi.-d by a particle at tin- maximum
'"- natural extent bein^ I. bv the formula, extent at

:;_>! I

max. den-.

\\'llell the \ehicilN i> I 111' feet p.-r -erolid. if \\ put the -lib-

ent II .

et, we lia

llltell>it \ ..I' the |MlNe. A I'J'.CJT
'

.Maxinium ilrii^if y. | -465.

|-:\ieiit .!' partiel*

If \\e take I'm- the -/m-n velocity, that \\liicli a link \\..uhl

actjiiire liy fallrii^ ihvoii^li the >ult an-cnt . <T that uith \\hieh

air \\ouhl rush into a vaeimni. \\ e shall find // = II, ami the par-
tirle- \\ill In- rninpn'>N 4 'i| into halt' their natural >i/r. an<l the

leiisity will l>e doiihle the natural delimit v.

A coiidensiim foree e)ui\alent t the pn^>nrc }' a e<lumn

feet hi^h, and which compresses the particle^ int.. almiit

their natural si/e, is a pulse cxn-cdinjrly intense
91 U

compared with thai \\hich Neuton supposes; hut if our solution

of the prohlem is cnnvcl, it is physically impossible that a pulse
of less intensity should propagate itself in our atmosphere with

a velocity of 1142 feet in a >eeoml.





ARTICLE! ill.

(hi (/' Mot/r n! i'. i

i><liisii/
<>t i'Jilslir /''/H/(/s r/.s

hi/ I)t/lt<Hliir

THAT under tin- emit rolling influence of the known laws of

motion, clastic fluids must expand according to >omc definite and

invariable law, is an obvious truth and one which has often been

recognized by mat heniat icians. Hut the determination of that

law is a problem which hitherto, it is believed, has not been

-olvcd. There are many interesting points in mechanics and

ph\>irv. in relation to which the present state of knowledge is

imperfect, which depend for their correct ami com) k-te develop-

ment, in part at least, on a solution of this problem. It is there-

fore a point of some interest to science. It is our purpose in this

article to solve this problem; and we shall do so by employing
a method similar in part to that employed in solving the problem
of the propagation of pulses in clastic media, in the American

.Journal of Science, second series, vol. v, page :i7'J.

IJefore entering upon the investigation we will here state one

curious and remarkable fact which the investigation disci

We revert to it here because a fact so much at variance with pre-

conceived notions may be interesting to those readers who will

not care to follow out the mathematical details of this article.

When a fluid passes by free expansion from one state of density
to another, we should naturally suppose that it must pass through
all the intermediate states of density that can be assigned between

the two. Such appears to have been the notion of every writer

who has made reference to this point; ami at first view it would

seem absurd to suppose that the fact could be otherwise. But

* Published A. D. 1850, in the American Journal of Science, second series, vol.

i.\. p. :;:M.
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such is not the way in which elastic fluids expand. On the con-

trary the parts of the fluid successively and instantaneously

change their density, to the extent of one-half (when free to

expand to that extent) without passing into the intermediate

states. As vapor is thrown off from the surface of water in a

tenuous state ab initio, and without having first passed into those

states of density which are intermediate between the density of

the water and that of the vapor, so a column of rarefied fluid is

thrown of from the front of a denser column; each infinitesimal

element of the highest order of the denser column, being success-

ively and instantaneously transformed to the more rare state.

And as the change of density is instantaneous, so likewise the

entire velocity due to that change is imparted instantaneously to

each element successively.

But to proceed with the investigation; suppose a straight tube

of uniform calibre extending indefinitely in both directions from

a given point. Suppose the tube on one side of this point to be

filled with a column of fluid of the density D, indefinitely expan-

sible, and always maintaining the same ratio between its density

and elastic force when it expands; and suppose the other portion

of the tube a perfect vacuum. It is required to determine the

law according to which the fluid expands into the vacuum; so

that we may be able to assign the precise state of the fluid, in

respect to density and velocity, at each arid every point of the

tube after the lapse of any given time from the commencement

of the expansion.
Since the elastic force is always as the density, D may repre-

sent both the density and the elastic force. The force D acts

during the first instant in every part of the column, and in every

direction; and therefore during that instant every part of the

column is kept in equilibrio except the first element. Conse-

quently in the first instant expansion takes place in the first

element only, and as the whole force D acts during that instant,

the parts of this element must receive such velocities that the

sum of their momenta shall be equal to that due to the action of

the constant force D during that time. It is obvious that the

termination of the first instant coincides with the commencement

of motion in the second element; also that motion will not com-

mence in the second element until the density in front of it has

been to some extent reduced. Let the ratio in which it is reduced

before motion begins in the second element be represented by .
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Then the den-ilN of the posterior part of t In- ex pandcd element

at the end ni' thetir-t infant U N"U for reasons which will

>oon he apparent, all tin- other parts..}' tin- . \panded clement,

whatever may In- their prc-cnt >tate of den-ify, ma\ In- <-oii-

videivd a- having passed lir-t into the den-hy Hut at the

>ame time thai the -raJe be-j-.m ! form in front of the

foliimii, tliat ura-h- itrir must lia\e begun to 6ZpSJld */////// in

the same ratio, |'<>rmiiiLr anothri 1

4r;nlr Ami at the >amr

time that the i;r:nlc . IM-^HI t t'onn, that likr\vi>- nni>t have

D to e\paml in the ^iim- ratio t'ormiii'^ a i/nnlr
: ,

and go

on <i<I iiifiititum. Tlie grades therefore will correspond to the

lei-ins of an infinite series, in decreasing geometrical ]rogn->-iiui.

All of them originate xinuiltnmntHxIt/ in the h'r>t element; and

yet every grade respect ively may be considered a> having )a--ed
into and out of all the grado which precede it : inasmuch a> each

in its origin is a mm<fitinnt jx/rf of that which precede^ it. Tlie

fluid which passes into any one of these grades in the first instant

does not all of it pass into the next in the same time: for equal

<|iiantities by measure expand in eijual ratios in equal times; and
since a given quantity by measure in any one grade becomes a

larger quantity by measure when expanded into the next grade,
a port inn will bave been left at tbe end of the first instant in each

grade which has not expanded into the next. Hence at the end

of the first instant the first element of the column will have been

distributed into portions OF grades, having their respective densi-

ties corresponding to the terms of the infinite scrie-

D D D I)

-, ? . ?,
etc. (A)

If we extend this series backward one term, we obtain the

series

D D D D

Since equal quantities by measure pass out of each of these

stall's in a given time, if x be the space occupied by the original
4
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element, and if we multiply each of the terms of the scries (B)

by s, then the terms of the resulting series

Ds Ds Ds DsD*' v f i?' ^ etc - (C)

will severally express the quantities of fluid that expand from

each grade respectively into the next. Now since fluids expand-

ing in equal ratios acquire equal velocities, equal velocities are

acquired in each of these expansions. If then we find that

velocity and by it multiply the sum of the series (C), the product
will be the sum of the momenta generated in, or imparted to, the

parts of the first element in the time in which the point of expan-
sion recedes through s.

If the quantity Ds be expanded from the density D to the den-

sity ,
the space it will occupy will be increased in the inverse

ratio of these densities; and, therefore, :D : : s : sv. Hence s and

sx are respectively the spaces occupied by the element before and

after the first expansion. Now the velocity which the mass Ds
receives in this expansion, is obviously that which would carry it

over the difference between these spaces in the time in which the

expansion takes place; that is, the velocity imparted in the first

expansion is sx s=s.x 1; and the same velocity is imparted in

every other expansion. If, then, we multiply the sum of the

series (C) by s.x 1, the product will be equal to the sum of all

the momenta generated in the parts of the element. This pro-

duct is Ds z x. Therefore Ds 2x is the entire amount of momentum
which the force D is competent to generate in the time in which

the point of expansion recedes through s.

We will now proceed to find another expression for the mo-

mentum which the force D is competent to generate in the same

time, in order that by comparing it with that just found, we may
ascertain the value of x.

Let H be the height of a column of fluid of the density D,

whose weight is equal to the elastic force D
;
and let H h be

the height of another column of the same density whose weight

is equal to the elastic force . Then :D: :H:II h. Let mn
*& *x>

be the space occupied by the first element at the density D,
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ami ///<? thai u liirli it ocnipie- \\ hen expanded to the density .

X

Since the Bpacefl occupied h\ tin* element ill tin - an-

inversely a- the den-it ie-. ffffl : : I >: : 1 1 // : 1 1. ami there-

fore, ///.- * : w$ :: H A j H i whence we obtain H =- . In
.N'//

the lime iii \\hirli tin- point of expansion recede! through 0tJ,

the element I >.s r, velocity which will carry it over*// in

the ^:iine time. If, then, mn represent tin- velocity of the point

..f expansion. ftn will ivpn-vent the velocity impart e, I to the fluid

i.\ thciirxt e\j,an>ion. Consequently, the reti \l..-it\

of the point of e\paii-ion mii-t le Midi that in the time in which

it passes oyer anj space, the force D may give to all the fluid

in that .|arr the velocity x//. Hence tlic point of cxjiansioii will

run over // in the time in which the force D will <_rive to all
X

the tlni.l in // t he velocity .sv/. Hut the force I) i- e<jual to

tin- '"'/;//// of all the tlni<l in //. Therefore t he point of expansion
runs over // in the time in which the mass // would in falling by
\\* own gravity ac<(iiire the velocity .>//. The time in which a

falling body acquires the velocity .v/ is to that in which it would

ac<|iiire the velocity of the point of expansion, or ///// as x// to ;////;

ami the spaces over which the point of expan>ion would run in

these times uiv in the same ratio. Therefore, putting S for the

space which the point of expansion would run over while a falling

bo.
ly would acquire the velocity of the point of expansion, we

have f< a : nui : : /i : S, or, .s-// : nut sn : : h : S; whence we obtain

A. But we have before found 11= . There-
sn fn

fore Si=II //; that i-, the point of expansion will run over II A

in the time in \\hich a falling body will acquire the same velocity.

Consequently the velocity of the point of expan-ion is that which

a body will acquire by falling through .

If the force I) act on the mass II .luring the time that ma-s
would fall through II, it would give that mass a velocity which
would carry it over -Jll in the same time, because the force D is

equal to the weight of the mass. The mean velocity of a body
falling through II is that which will be acquired by falling through
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. If, then, the point of expansion moved with the velocity

acquired by a body in falling through ,
in the time of passing

over H, the force D would be competent to give to all the fluid

in H a velocity which would carry it over 2H in the same time;

and, consequently, in the time of passing over s it would give to

the mass I)s a velocity which would in the same time carry it

over 2s. But the point of expansion, as before shown, moves

with the velocity acquired by falling through -
. Now the

H. H-A /H /H-A
velocity due to is to that due to- as 4/ to A/-

;
and

the times in which the point of expansion would move over a

with these velocities, are inversely as these velocities, or as

1

to . But D: ::H:II A, and therefore these times arc

1/5 1/i
as to

,
or as 2 to A/'2x. The Telocity which the force

4 2x

D can impart in these times is as the times respectively. And
since it has been shown that in the former of these times the

velocity 2s will be imparted by the force D, we have 2i^/2x:i
2s\/2x

2s: s/y/2ce.
That is, the velocity which the force D is

competent to impart to the mass Ds in the time in which the

point of expansion recedes through ,
is

s^/2.r. Consequently
the momentum which the force D can impart in the same time is

Ds z
^/2.'.

But we have before found this momentum to be D.v 2
./

1

.

Therefore ]Xs' 2
.>'=D 2

>y/2 a?, whence x=^/2x and x=2.

Having thus found the absolute value of #, if we substitute

this value for x in the series (A) we shall have, for the densities

of the several parts or grades into which the first element will

have been distributed at the end of the first instant, the respect-

ive terms of the following series, viz:

D D D D D
2' 4' 8' 16' 64'

6

We found the velocity of the point of expansion to be that



which a body will acquire l.y fall'mi: through = ': tin- \aluc of

II
/ if

ft being dependent on the Yalue of z, But when #=2, - ~
.

Therefor,- tin- aUolule velocity of the |M.int
of expansion i> tliat

\\hich a bod\ \\ill acquire by falling through . OF One-fourth 1

I he >iibtaii_r-nt iif the fluid.

Since the extent of the element is doubled l.y
the fiiM expan-

sion, the velocity of the tiiM grade will be equal t the \eh.eity

of the point !' rxpansion, or that due to oin-rmrt h .!' the -ul.-

taiiLT'iit; and an e<|iial ad<liti<mal velocity i> imparted in each

^iicceedin^ expansion. It', then, / represent the velocity du

one-fourth tlie sul.t ailment of the fluid, the al^olute velocities of

the M-vrral grades I'espect i\'ely will IK- e\pres>ed ly the re-pect-

ive terms <.f the series /-. 2V, 8, I/', -\ <'tc.

Since one element =d \t\ mea-ui'e pa-ses from each u'rade into

the next, and lecome> =i.s- in the ne.xt, the length of each irnidc

at the en<l of tin- first instant . 2s =.v. That is, tlie h-nurth of

each Lrrade is ecjual to that of the original element; and the place
of the tir>t ^rade is that which was occupied by the original

element, the other grades succeeding it in continuous order.

Having now ascertained the state of things at tlie end of tin-

first instant, let us inquire what takes place in the second instant.

It is obvious that during the second instant the front of the

second element of the column, and also the front of each grade

respectively is a point of expansion from which one element =s

by measure passes into the next grade. Thus in the second

instant each grade receives an addition of 2s to its rear and IOM--

I.s
1 from its front. The same takes place in every succeeding

instant. Since the increment of the length of the grades for each

instant is .<, the velocity of the increa>e is . The length of the

grades is therefore always equal to the space through which the

point of expansion has receded in the column. Thus while the

length of the grades increases with the uniform velocity r, their

number, velocity and density remain unchanged. Consequently
no other gradations of density can exist in front of a column

expanding into a vacuum, but those which correspond to the

terms of tlie infinite geometrical series
, , , , etc.: and no

i 4 8 10

other gradations of velocity but those which correspond to the

terms of the infinite arithmetical series
/-, L'r, <'U', 4r, etc.
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The point of expansion in the column recedes with the velocity

v; and since the length of the first grade is always equal to the

space through which that point of expansion has moved, it fol-

lows that the point of expansion from the first to the second

grade is stationary. And since the second grade increases in

length with the velocity v, the third point of expansion moves

forward with the velocity v; and since all the other grades

increase in length with the same velocity w, the velocities of the.

several points of expansion will be expressed by the following

series v, 0, v, 2y, 3u, 4w, etc.

In order to give a synopsis of the results to which we have

come, let AB be a column of fluid of the density D, expanding
into a vacuum toward C. Let the velocity due to a height equal

to one-fourth of the subtangent of the fluid be v. Suppose

expansion to have commenced at B, and the point of expansion

to have "receded to any distance n. Set off from B an infinite

number of spaces B, ab, c, cd, etc., each equal to B;?. Then

the points /i, B, a, b, c, d, etc., are the places of the points of

expansion, and the boundaries of the several grades, or parts

having different degrees of density and velocity, into which the

original mass Bw has been distributed.

A n B a I c .d etc.

Between these points respectively the densities are

D D D D D
. . . . . etc.

2 4 8 16 64

The velocities are

v .Vv.Sv .4v. 5v . etc.

These points move toward C with the velocities

y, 0, v, 2y, 3v, 4w, etc.,

and relatively to each other, and to the fluid, with the velocities

V, V, V, V, V, V.

As corollaries from the preceding investigations we may state

the following propositions:
1. No other gradations of density can exist in front of a col-

umn of fluid which is expanding toward a vacuum except those

which are found by successive divisions of the original density

by 2.



27

2. Tin- change of density in tin- fluid ill pa^mo from one <>!'

I hoc 'jT.ldev |o tlic lievt JN lint iji'inlil'll lilit ///.</ lutil,,

tliat tin- grades are constant!} -eparated i'r.,m each other l\ a

mere imatjiiiarN plain-.

:*. Nn other \elocitiex ean ,.\i-t :iiiin._r tin- pan fluid

which 'IN expanding i'\\ard a \aciiuiii lul -iich a an- mult iph-N

nf the xelnrit'n-s which a body will acquire by fall'mir thmu<_r h

niir-I'mirt h (!' the Mildaii'jcnt !' tin- fluid.

I. Tin- vrlm-itN inipaftcd tn the pai'tido nf an , \ pandiiiLT fluid

'IN in, i Hi, n-Niilt ,.f a cniitiuual and gradual accelerat i<n, hut nf

BQcoeasive instantaneous ioorementa cpial tn that which a idy
will actjuirc ly f.-illiiiir tlimu^li mic-I'mirtli nf the Militan^cnt of

the fluid.

It im\\ reinain> t e.,nsider the mode nt' <-\pan-.inii when the

fluid is imt t'rcc tn expand indefinitely, but lias it- expan-inn
arreNted at smne ^iveii density //.

It i> nbvinus that it' // cnrresp.Mid in value tn any of the terms

of the >erie>. t he manner of expansion up to that point will be

the same as if the e\pan>i<.n were continued indefinitely. There

will therefore be in the expanding fluid, in .such case, BO many
grades corresponding tn the terms nf the Nerics; a> there are of

complete terms intervening between I) and <I. IJut let us inquire
what takes place when d does not correspond to any terms nf tin-

series. First, suppose //to be greater than the first term. Then
from what has been before shown, the velocity of the point of

expansion is that which a body will acquire by falling through

when II -A is the height of a column whose weight is
L

equal to the elastic force of the expanded fluid; also that the
LI

velocity of the point of expansion is that due to the height

when the expansion is from I) to . These velocities are as

|/
to y - - and since II : II -fi : : 1) : </, those velocities

areas A/ to 4/ The velocity due to - is /. Hence we

have
|/

:

|/
: : v : u^- r= velocity of the point of expan-

sion in this case.

Let us next find the velocity of the fluid. The times of run-
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ning over s by the point of expansion, with the velocities A/ -

and A/ are inversely as these velocities; and the velocities

imparted to the mass D,<? in these times arc as the products of

the times by the respective forces. When the velocity of the

point of expansion was 4/ the force was and the velocity of

the fluid was v. The force in the present case is D d. Hence
D

D d D-d
we have -~r : -j-

'' v : v^/2 . -= ^= velocity ot the fluid in

V T V
this case.

Secondly, suppose the value of d to fall between any two con-

secutive terms of the series. It is obvious that we have now

only to substitute in the expression last found that term of the

series which is next greater than d for D, and it will then express

the acceleration due to expansion from the last complete term

into the fractional grade.

To find the retrogressive velocity of the point of expansion,

relatively to the fluid, in the grade which precedes the fractional

grade, we must make the like substitution of the last complete

term for D in the quantity VA/ ^rr found above. The retrogres-

sive velocity of the point of expansion in the grade which pre-

cedes the fractional grade is greater than in the other grades, and

of course that grade will be shorter than the others in the same

ratio. This is the only modification which a fractional grade

produces in those that precede it. In all other respects the mode

of expansion, up to the fractional grade, corresponds to the view

presented in the foregoing synopsis.

We are now prepared to construct a formula for the final

velocity of a fluid which expands from any density D to any
other density d.

Let V be the final velocity; v the velocity due to a height

equal to one-fourth the subtangent of the fluid; n the number of

D D D D
complete terms of the series

, , , , etc., which intervene

between D and d. Then vn is obviously the velocity of the

grade which precedes the fractional grade, if there be a fractional



grade. When l lie tir>t grade i> fractional \\c t'ninl it- velocity

to be
v^/'l

. : :inl \\ e aUo found that to -uit tin

sion t< I I :' a fractional 'jntdr oeeiirnii_r e|-e\\ here in the

ot' the series, ire are to substitute for \> that term of the

\\hieh U next greater than </. \n\v the value .f that term

will he
)f

. Mak'niLT the -ut.-t it ut i..n accordingly, the ezprei

for the aililitiniial veh.eii \ ,|IK- t, e\ |.aii-i<n into the fractional

D
le becomes, after reducing r \-- .,~\)f '*>'

:H|< ''"-

jiiantitv t /// we nlitain the final velneity u\' the Hni<l.

from it> expansion i'rni any lensity D to any other density '/.

llelK-e the formula i>

When there is n<> eninplefe term of the >erie- let \\ ecu I) and </,

= o and the almve t'ormula l)ecomes

When there is no fractional u'rade, that i>. when d is ejual to

term of the seri->. that part of the formula beyond n equals

(i, and then the above formula becomes Y=vn.
From the general principles here developed it is obvious that,

as in expansion, so likewise in condensation, the transition of

an elastic fluid from one density to another is not by gradations
which may be repre>ented by a curve, but abrupt, instantaneous

per saltum vel *>iltnn. Pulses, therefore, which are propagated in

elastic fluids partake of the same character; that is. the condensa-

tion and subsequent reexpausion of the successive elements

through which the wave moves is instantaneous. This fact was
not known when the article on the propagation of pulses, referred

to at the commencement of this article, was written. It however
not atl'ect the validity of the reasoning in that article.





AKTK LK IV.

l)cniunstnit'nnt <>t tin L<nr of tin i'low of

l-'lniils H'hirh tVOS dedtirrd f/trorrf/rtrl/t/ /'//

Article \*

l\ volume \', M-coiid series, of tin 1 American .Journal of

Science, page 7H, I proposed a new theory of the How of cla-tie

fluids through orifices, differing essentially from that heretofore

ived. The chief object of the present article is to give an

account of an experiment instituted for the purpose of testing
the truth of that theory.
The fundamental points of difference between the old theory

and the new, are as follows:

1. The old theory regards the constant force which expels the

fluid as being, in all CMM-S. e<jual to the difference bet ween the

elastic forces of the fluids in the two vessels.

The new theory regards it as equal to that difference only
when the less exceeds half the greater; and in all other cases as

equal to half the greater.

2. The old theory considers the fluid as passing the orifice with

a density equal to that in the >//.W/ "/;//'.vy vessel.

The new theory considers it as passing the orifice with a

density equal to that in the receiving vessel, whenever this laM

is equal to or greater than half the density in the discharging
!; and in all other cases with half the density in the dis-

charging vessel.

The- formula for the quantity discharged in a given time,

predicated upon the new theory, gives, in all cases, le than

* Published A. D. 1851, in the American Journal of Science, second series,

\..l. xii. p. 186.



that predicated upon the old theory. In the case of a How into

a vacuum, the difference amounts to one-half.

The scheme devised to test the relative merits of the two

theories, was founded upon the following considerations, viz:

When air rushes from the atmosphere into a receiver wholly or

partially exhausted, passing on its way through a small inter-

mediate vessel or chamber, entering that chamber and passing
out of it through equal orifices, it will take in that chamber a

density somewhere intermediate between that of the atmosphere
and that in the receiver. For each relation that may at any
moment subsist between the density of the atmosphere and that

in the receiver, the density in the chamber will have a certain

definite and determinate value, such that the chamber may
receive through one orifice and discharge through the other

simultaneously the same quantity of air. Now since in order to

this equal simultaneous now the two theories respectively demand

quite different densities in the chamber, the object of my experi-

ment was to ascertain the actual densities in such a chamber

under various relations of the density in the receiver to the

density of the atmosphere, in order to compare the densities thus

ascertained experimentally with those demanded by each theory

respectively in like circumstances.

Fig. 1.

To try the experiment, I constructed the apparatus shown in

figure 1. A is a vessel or receiver of the capacity of about

fifty gallons, so arranged that it may be exhausted by the



;iir pump or other\\i-e. 15 ! ;tii elbow formed of lead pipe .it'

one indi calibre, one branch of which opens into tin- receiver,

and tin- end of tin- olln-r branch at ( i- co\ en-d by a bra** plate

or disc about ,'jh of an inch in thickngM, through which i- an

orifice of about ^.thof an inch in diameter. Another -imilar

with an orifice of the same -i/.e [nterseotfl tin- pipe at I).

tliu- forming a chamber between the t \\ o plate-. Tuo -hort

tube- are inserted into t he hiWer -iileof the pipe; one . >n eaeh

vide of the plale I). With tln-e >liort till.

and //, each thirty-three inelio in len-lli, are connect e| l.y nieaii>

of pieces of India rnhher Im-c. Thoe -la-- tule- an- open at

hoth end- and terminate at the lottom in a \a-e of mciviiry. A
rod (not slmxvn in tlie ^ketch) graduated to inches and tenth- i-

plaeed he-ide the ula^ tnlc>. sii>t:iim-l upon a Moat re-tiii'_r upon
the Mirface of the mercury, so adjusted that /ero of t he -jra.lna-

tion may coincide with the sin-face of the mercury.
If theorilice at ( le dosed ly :i stopper and the receiver

exliansted, the mercury will rise in the tubes: and if the density
of the atmosphere at the time of t lie experiment le expressed in

inches of mercury, the height of the mercury in the tube- a-

read upon the ^radualed rod will lie equal to the difference

between the density of the atmosphere and that in the- receiver.

If \ve now remove the stopper from the orifice at ('. the column

of mercury in the tube /// will instantly subside to a point whicli

indicates the difference between the density of the atmosphere
and the density in the chamber when an equal quantity of air

Hows through the t wo orifices; while at the same time the column

of mercury in the tube // will only have begun to subside very

slowly as the density in the receiver im-reaM-.-. Having noted

the height of the barometer at the time of the experiment, if we
note the simultaneous heights of t hese t wo columns of mercury,
and deduct them respectively from the height of the barometer,

we shall have the density in the chamber necessar\ to an equal
flow through the two orifices under the relation which snb-i-i-

at the moment of notation between the density in the receiver

and the density of the atmosphere. And if we note the simul-

taneous heights of these columns at various times during the

filling
of the receiver, so many densities in the chamber shall we

find Corresponding to the different relations of the other two

densities.

At the time of the experiment the height of the barometer, or
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density of the atmosphere was thirty inches. In consequence of

leaks in the receiver, I was unable to exhaust it so as to raise the

column in the tube n higher than twenty-six inches. I noted

the simultaneous altitudes of the two columns at the moment
wThen the column n coincided with each successive inch-mark

upon the graduated rod, and thence ascertained the densities in

the chamber under twenty-six different relations between the

density in the receiver and that of the atmosphere. These

results I have placed in the table beyond, in which the first

column shows the densities in the receiver at the times of nota-

tion, and the second the densities in the chamber corresponding
thereto.

In order to ascertain what these densities should have been

according to the old theory, I constructed a formula as follows:

Let A be the height of the barometer at the time of the experi-

ment, D the density in the receiver, d the density in the cham-

ber, V the velocity through the first orifice, v the velocity

through the second orifice. Then according to the old theory
the force which drives the air through the first orifice is A d

and that which drives it through, the second orifice is d D.

But since an equal quantity flows through both, these forces are

as the velocities, that is A d\ d D : : V : v.

Again, according to the old theory the density with which the

air passes the first orifice is A^ and that with which it passes the

second orifice is d. But since the orifices are equal and the

quantities which pass through them are also equal, the products

of the velocities by the densities are equal, that is AV=dv and

Y= . Substituting this value of V in the preceding couplet

and then finding the value of J, we have the following formula

for determining the densities in the chamber according to the

old theory, viz :

d=
4 *Z

The several densities in the chamber computed by this formula

are placed in the fourth column of the table.

In order to ascertain what the densities in the chamber should

have been according to the new theory, I constructed a formula

as follows, preserving the same notation as above.

By the new theory the force which drives, the air through the
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orilicr i- J -/ whenever '/ i- not fatt than . l>ut </ i-

m-\er !... tli.-in - \\licii an equal quantity tlo\\ - throii'_r h both

orifice^, f ( ,r jf it were -o the chamber \\ould. a--.,nliiiL' to our

lheor\ . be ivei-i\ iiiM- ai much a- -oiihl llu int < a \ a<'Uiuii umlcr

tlic j.iv^im- J, aiiil iniKt then-fore .li^.-liai-'jc intn tin- receiver

a> Hindi a- \\onld flow int.. a vacuum umlcr a |rc*-im- J: in

..r,|.-r !< \\liidi tlic ilrnsit y in t lie cliamlM-r mii-t IH-
.-.jiial

to J,

aii-l therefore uTc.-it cr tlian
^

( oiiv (

.,jiu-nt 1\ , the force \\liich

Irivi-s the air through the /irxt oi'itice i- in thi- ari-anLrciiient

always J </. A^aiu, the force ex|M-inlr.l in driving the air

Jhroii^li the M-c,,n<| orifice ly theiieu theory is whenever D

is not greater than -. Let us first construct a formula for the

3 in whicli 1) is not greater than . In these CUM-S the <len-

uihler \\liich the air pas>es the oriti<-e^ are respectively

J //ami . Since the forces are as the vcloeiti.-.
2

and since the quantities are equal, dV= ,
and V= . Substi-

2 2

* 4
tuting this value of V in the couplet, we have d=4; a constant

o

quantity. Hence while the density in the receiver varies from

2
to J, the density in the chamber is a constant quantity and

5

equal to -- Z/. Let us now construct a formula for finding the
o

value of (I when D is greater than. In these cases the forces

are A d and d D and we have for the couplet 4 c7: d D : : Y : .

The densities in the orifice are d and 1) and we have </Y=Du

and V= . Substituting this last quantity in the couplet we find
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as the formula for the value of d by the new theory when I)

2
exceeds A. The densities in the chamber computed by these

5

formulae are placed in the third column of the table.

DENSITY OP THE ATMOSPHKKK DURING EXPERIMENT 30.

Density
in the

Receiver.
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results to those due to the new theory, there is yet a small but

distinct deviation, which holds throughout. This deviation in-

dicates either that there is some cause affecting the flow which

the theory does not take into account, or that in the structure of

the apparatus or in trying the experiment, there was some failure

to comply with the requisite conditions.

Although the apparatus was rude in its structure, yet care had

been taken to secure a compliance with the conditions on which

the experiment was based; and in conducting the experiment I

was assisted by my friend, Prof. A. C. Twining, a gentleman

distinguished for his accuracy in such matters. The experiment,

moreover, was several times repeated, with no important differ-

ence in the results. For these reasons, in seeking the cause of

the deviation, my first inquiry was whether ifc might be attri-

buted to a change in the ratio of elastic force to density; the

theory being predicated upon the assumption that this ratio is

constant. It has been ascertained by experiment, that when air

is condensed and then suffered to lose the heat evolved by con-

densation, the ratio of its elastic force to its density will be

diminished. Hence it is certain that a part or the whole, or

possibly even more than the whole heat evolved by condensation

will be required to prevent that ratio from being diminished.

Still, however, it has generally been assumed by philosophers

(I know not on what grounds) that if air is suddenly condensed,

so as not to allow the heat evolved by condensation to escape,

the ratio of elastic force to density will be increased. This

assumption was made by Laplace when he attributed to this

cause, in part, the velocity of sound. Let us suppose then, for

the present, that in sudden condensation the ratio of elastic force

to density is increased. It will then follow that in sudden ex-

pansion^ the ratio of elastic force to density will be diminished.

But if that ratio were diminished, then the deviation in the table

should be in the opposite direction; that is, the experimental

results, instead of being greater than the theoretical, should be

less. The deviation, therefore, is not accounted for by this sup-

position; on the contrary, the experiment seems to prove that

the ratio is not diminished by expansion, and therefore cannot

be increased by condensation, as Laplace supposed.

Let us next take the contrary supposition, viz: that the ratio

of elastic force to density is increased by expansion. This would

cause a deviation in the same direction as we find in the table.
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In order to ascertain whether tin- de\ iation in question is due to

llii> Cause, u e mu>t next iiHjiiire whether a delation ari>in<_c

from thiv eau*6, \\ouhl vary in tin- same manner throughout tin-

table, as does the observed deviation. Now if we go through
the table ami assign for cadi ib-er\ at ion severally, the manner

in which the ratio tit' ela-t ic force to density inii-t increa-e. in

order to satisfy that ohservat ion, we shall find very nearly one

ami the Mine increment of the ratio .leman.le.l for all the ob~. i

\ati.ns. Hence if we attribute the deviation to this cause we
should he obliged to conclude that one and t he same change in

the ratio takes place, whether the expansion 1,.- -JT, .;iti-r or less.

l>ut such a conclusion is ohviously inadmissible. We cannot,

therefore, attribute the deviation in question to a change in that

ratio, either by increase or diminution.

Nor can we ascribe the deviation to that which is the chief

cause of deviation from theory in the case of the flow of liquids,

vix: the contraction of the stream in passing an orifice. For if

that cause operated, it would affect the flow in the same ratio in

both oritices. and therefore would not, in this case, affect the

indication^ of the mercurial columns. Moreover, I think it can

be shown, from consideration a priori, that the cause which

produces the contraction of the stream in liquids, could not

operate to affect the flow of expansible fluids.

Having satisfied myself that the deviation was not due to the

causes above named, my next inquiry was, whether a difference

in (lie sizes of the orifices (hitherto assumed to be equal) would

cause a deviation corresponding to that in the table. In examin-

ing this point, I found that the experimental results would be

very nearly satisfied throughout the table, by the assumption
that the area of the second orifice was less than that of the first,

in about the ratio of .933 to 1. As the two orifices had been

made as nearly equal as they could be by forcing the same steel

plug through both, I was confident that, as originally formed,

they could not differ to this extent. But it occurred to me that

some accidental circumstance might have occurred to diminish

the inner orifice, and I suspected that the workman, in handling
the brass plate after the orifice was made, had got dirt into.it,

and had omitted to cleanse it before soldering on the outer plate.

To ascertain whether such was the case, I divided the tube near

the second orifice, and, upon examining it with a microscope,
discovered that there was dirt adhering around its inner periph-
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ery sufficient, I think, to cause a diminution of its area to the

extent above named. Unfortunately this discovery was made
after the arrangements for trying the experiment had been

removed; and I have not since found leisure to replace them and

try the experiment anew. But for this accidental circumstance

no doubt there would have been a still nearer approximation of

the experimental results to those derived from the formula. The

coincidence, however, is sufficiently near to establish the truth

of the new theory, so far as respects those points of difference

between the two theories specified in the first part of this article.

The fifth column of the table shows the several differences

between the experimental results, and those due to the new

theory. It will be noticed that these differences increase slightly

between density 10 and 13 in the receiver, before they began to

decrease. This, I think, indicates a slight obstruction to the

flow through the second orifice, when the density in the receiver

becomes equal or nearly equal to that of the effluent stream.

This increment at its maximum amounts to .088, corresponding

to the pressure of that portion of an inch of mercury, and is, I

think, the measure of the obstruction or resistance due to that

circumstance. If this view of the subject is correct, then there

would have been a deviation to this extent in this part of the

table, even if the orifices had been equal.

It is desirable that further experiments of this kind should be

tried by those who have better means at command than I had to

do justice to the subject. To such as may be disposed to under-

take it, I would suggest that a perfect equality of the two orifices

might be secured by interchanging the discs, varying the sizes of

the orifices until they gave the same indications in both positions.

If, after thus securing the equality of the orifices, there should

still be a deviation in that part of the table where the elastic

force in the chamber is constant, such deviation, I think, must be

attributed to a change in the ratio of elastic force to density;

and if so, its amount would furnish the means of determining

the law according to which that ratio varies.

I would also suggest that a modification of this experiment

would furnish perhaps the best possible means of determining

the law according to whih the ratio of elastic force to tempera-

ture varies, when the absolute amount of heat is constant. In

an arrangement for this purpose, the bulb of a thermometer

should be inserted into the chamber, and the outer orifice should
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be so constructed that it may In- enlarged <,i- dimini-hed at pleas-

ure. With this arrangement, we may cause tin- air in the cham-

ber to a--iime, aim..-) in-tantly, any .-la-tic force ue may choose,
between the clastic force of tin- atmo-phere, aii<l a little more

than twice tin- da-tic forOC in^tln- !<<, -i \ <T : ami uc may keep
that force i-imxtimt in the diamber during any time tluU maybe
rc<niirc(l to cool the thermometer lo\sn to tlie rorre-jM.inliii;

temperature, the continual tlou through the chaml>er in the mean-

time carrying <>(V not only the heat \\ Inch tlou- in from extrane-

oii- BOUrce, lut al-o that <lerive(| from tlie thermometer its.-lf.

\\'e may llms a-certain tlie relation of elastic force to t em j.erat tin-

at as many |n.int- a- uc please u it hin this raii^r, ami therehv

determine the law of their variation when the absolute amount
of heat remains constant.





ARTICLE V.

Thr Form, Formation and Movement of Sonorous Waves*

THERE can be no doubt that the movements of aerial particles

resulting from forces impressed upon them, and the t ran -mission

of force from one to another are in perfect accordance with

I )\-naimc laws. But the various attempts which have been made

to determine by the application of these laws the precise order

and extent of their respective movements have not been success-

ful. While by the application of Dynamic laws to other matter

we are able to trace with the utmost precision the paths of bodies

in the remotest regions of space, we have as yet no definite

knowledge respecting the movements of the air which surrounds

us; not even of those movements on which we are constantly

dependent for the transmission to each other of our oral com-

munications. There are many problems pertaining to this

department of Physics the solution of which would be of great
interest to science, but to solve which no attempts have as yet
been made because of the apparent difficulties involved in the

investigation. Whatever of thought has been bestowed in this

field of inquiry has been devoted chiefly or wholly to the deter-

mination of the velocity of sound. But the attempts to solve

even this problem, initiated by Newton, have been attended with

so little success that now, after the lapse of two centuries, during
which continual efforts have been made to reconcile the widely

differing results of theory and experiment, scientists are not

agreed whether this, or that, or both, require the correction

which should bring them into harmony.
* Read at a meeting of the Connecticut Academy of Arts and Sciences, Decem-

ber 21, 1881.
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The delay to develop this branch of Physics has been due, no

doubt, to the peculiar and complex nature of aerial matter; its

tenuity, its fluidity, its compressibility and its elasticity. These

properties have seemed to scientists to conspire to embarrass the

application of Dynamic laws to the air; while its total invisi-

bility has compelled them to pursue their investigations in the

dark, by abstract thought alone, and without the aid of the

senses to check the aberrations of reason.

On account of these properties of aerial matter the problem
to find the velocity of sound has always been regarded by mathe-

maticians as one of great difficulty. The late Professor Peirce,
in his Treatise on Sound, says,

" The problem to investigate the

general laws of the propagation of sound is one of the utmost

complexity, and has been resolved only under very restricted

conditions." After alluding to the profound researches which

have been bestowed on this subject by Euler, Lagrange and

others, he proceeds to investigate the problem restricted to the

case of propagation in a tube of uniform calibre. After conr

structing an elaborate series of differential equations to this

end, he at length arrives at one which he says
"

is altogether
intractable and incapable of integration." In order to proceed
further he finds it necessary to restrict the conditions of the

problem still further by confining it to the case in which the

elastic force of the wave exceeds that of the medium in which it

is propagated by an infinitesimal quantity only; that is, by con-

fining it to a sound of infinitesimal intensity. With the problem
thus restricted he goes on, and after a very elaborate process,

arrives at the conclusion that the velocity of sound is that which

a heavy body will acquire by falling through half the height of

a homogeneous atmosphere. This is the same conclusion as that

arrived at by Newton, Euler, D. Bernouilli, Lagrange, Poisson,

Laplace, and I know not by how many others, all of whom found

it necessary to restrict the problem to like conditions.

When nature is questioned respecting her laws, even by the

most profound mathematicians and by the most recondite pro-

cesses of analysis, if those processes are based upon assumptions
not consonant with her laws she will refuse to respond except
in equations

" intractable and incapable of integration." It is

the purpose of this communication to show that those who have

attempted to solve this problem have made an erroneous assump-
tion respecting the manner in which an impinging force imparts



motion lo aerial matter, and that
IIJM.II

a Correction Oi fchll

the difficulties whicli they encountered in their attemp'
a ,/,////// solution to tin- problem uill \aiiMi. ami we -hall b<-

able t> arrive at >in-h a -olution in a direct .m-l -imph- u

Tin- mistake to which I bare referred contbta in hasin^ as-

sumed that motion i> imparted b\ a finite fOTOe to tl

iHirtn-lt* of aerial matter in the -ame manner j

of matter; that is b\ ,/,,-, I, ,-,///,,,,. or, in other \\oid-.

that in the former a> \\ell as in the latter case motion I,.

with an infinitesimal velocity which i- augmented \ a finite

velocity liy infinitesimal increment-. Sm-h a notion jv not ,.,,|,.

-i-tent with Dynamic laws. The-e laxw demaml that wh-

I'orce of finite magnitude ads upon an infinitesimal (jiiaiitity of

matter a finite velocity proportionate to the force -hoiild le

imparted in an infinitesimal time. An impin^'ini.' I'oi < t h >
.

does not impart motion to aerial matter l\ aeceleration.

Hut (it may he asked here), has not Newton in the 47th pr-

positioii of the Secoml Hook of the Principia, demonstrated that

each intinitesimal particle of air that N put in motion ly a sono-

rous wave is accelerated and retarded according to the law of the

vibrating pendulum'^
It is true that the proposition ret'erreil t ///r/"/-/x to demon-

strate this; hut a careful examination will show that it t'aiN to

do it. In this proposition Xewton at the <utset a-Mnne- in hU

hypothesis the point to be proved and the conclusion at which

he arrives results from that assumption. It is in short a notable

example of "
reasoning in a circle." This will be evident upon

a close scrutiny of the argument: and it is also clearly shown by
(iabriel Cramer* who, to prove the inconclusive character of

Newton's reasoning in this proposition, shows that by a precisely

similar course of reasoning (</, ttmttifitt mutandis. >"// tt:<l,)n

verbis) it may be made to appear that the law of acceleration is

that which pertains to a uniform force, as in the case of hodie*

falling by their own gravity.

We may conclude then thai it has not been demonstrated by-

Newton that the particles of air put in motion by a sonorou-

wrave acquire their velocity hy acceleration; and therefore \\ e

may accept the conclusion to which we were led by Dynamic
laws, that each particle a^ Mi.-cr-sively encountered receive- itv

full velocity instantaneously.

* See Principia, Glasgow Edition, page 273, note.



Let us now consider the modus operandi by which the force so

imparted is passed along from particle to particle; and to facili-

tate our conceptions of the process let us suppose it to take

place in a tube of uniform calibre. Let PL, Fig. 1 be such a

tube, and let P be a piston fitted to it.

Fig. 1.

If a uniform velocity v be instantaneously imparted to the

piston, the plate of air which is in contact with its front will

instantaneously receive the velocity of the piston and at the

same time be condensed by a force equal to that required to

overcome the inertia of the plate. Suppose the velocity r to be

such that this condensing force is sufficient to reduce the thick-

ness of the plate y^; then will this plate, thus reduced in thick-

ness, be added on to the front of the piston and go on w ith it,

condensing the next plate, giving it the velocity / and pushing
it on in front of itself, and so on. Thus it will be seen that

when the condensing force is that here supposed,, the point where

the condensation takes place moves forward in the tube just ten

times as fast as the piston. When therefore the piston has

moved -^ of an inch there will be ^ of an inch of condensed air

in front of it moving with the same velocity as the piston. If

now, at this juncture, the motion of the piston be arrested, the

condensed air in front of it will continue to move on by its

momentum condensing and adding plates to its front as before,

and in the meantime the rear end of this condensed air having
advanced beyond the piston will have space to expand and

resume its normal volume and come to rest: and as it respects

each infinitesimal plate, the restoration will be as instantaneous

as was its condensation. That such will be the manner of

restoration need not be shown here, 'since it will fully appear
from what is shown in an article on the mode of Expansion of

Elastic Fluids in the American Journal of Science, second series,

vol. ix, page 334.* Thus we have a self-sustaining, self-propagat-

ing wave, the quantity condensed in front in a given time being

just equal to the quantity expanded in the rear in the same time;

the latter by its reaction furnishing the power to keep up the

motion and condense the plates in front.

* The third of the preceding articles.



4T

A wavt then, iii tin- -en-e in which \\ < shall employ the term

in this paper, ron-i-t- of a <jiiantit\ of air of ;i uniform d -\

greater than thai of the medium in which the u a\ i propaga
ami having the ab-olute velocity that i- dm- t.. tin- the

force which effected it- increased r.nden-al ion.

It ma\ In- \\cll here t" define a feu other term- -.1 phra468,
-ome <!' which we may have ..era-inn to employ in a -en-e ft

what different from tliat attached to them by other uritefHOD

this subject.

TllC l>r><l<ltl, of ,1 ,t', (l >, is the -pare occupied l,\ the r< i||ilc||s('<l

air measure*! in the direction in which it m..\ -.

Tin- intmxifi/ nf ,i ,i',i,<< \* the 6X0601 of it- elastic tor-

density o\cr t hat of the medium.

The velocity of a w<i>'< is the velocity of the point where the

purtieles an- condensed and put in motion.

Tlie i' i

Inritij <>f t/i,
i><ii'ti<'l<

.-< i> the absolute velocity in-tanta-

neously impressed upon the particles >ucrevxi\vly by the wa-

in the use of the term /><//V/Wrx we are not to be understood M
indicating any theory respertin^ t lie constitution of the atmos-

phere, we mean -mall part- <>r portions, not molecule- Mi-

atoms.

In showing how a wave may be formed in a tube we have .-up-

posed the motion of the piston to be arre-ted after moving ^ of

an inch. If it had been arrested after moving any smaller dis-

tance the /HWtdth of the wave would have been smaller in the

same ratio, but in every other respect it would have been the

same: it would have had the same intensity, the same velocity,

and it would have imparted the same velocity to the particles;

these quantities being dependent only upon the velocity of the

piston, and not on the distance through which it moved before

its motion was arrested.

We have thus shown how a self-propagating wave may be

formed in a tube. The process of the formation of such a wave
in the open air is, in principle, precisely the same, and the form
of the wave and laws of its propagation are the same.

It is well-known that sounds of small intensity propagated

through tubes have the range of their audibility extended to a

greater distance than it could reach if propagated in the open
air: but this function of the tube does not involve any modifica-

tion of the laws of propagation on which the velocity of the

wave depends. The reason why a tube has thi- effect may be
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readily illustrated. Suppose we present the end of a tube to a

vibrating body or other agent that may originate a wave; then

a portion of the condensed air which constitutes the wave at its

origin will enter the tube, constituting a self-propagating wave

therein; the rest of it will spread out forming a spherical shell

or wave whose thickness measured on the radius of the sphere is

the breadth of the wave; and since there can be no increase in

the quantity of this condensed air after the wave is formed, the

thickness of the shell or breadth of the Avave will be inversely as

the square of the distance from the place of its origin. Thus we

see that the breadth of the wave which is propagated outside of

the tube diminishes in a rapid ratio; but the breadth of that

which is propagated inside of the tube undergoes no diminution

except such as may be due to friction or imperfect elasticity.

Now it is evident that, other things being equal, the audibility

of a sound must be as the breadth of the wave; and that a

sufficient breadth of wave may be maintained in the tube after

the breadth of that outside shall have been so far reduced as to

be incapable of producing the required action upon the acoustic

organs. This is the only difference there is between waves pro-

pagated in the open air and those which are propagated in a

tube, and as we have shown, it is not a difference that affects the

laws of their propagation.
From the law of the transmission of force from particle to

particle, as we have shown it to be, we will proceed to deduce

the law of the propagation of sonorous waves.

Prop. I. The velocity of a wave of whatever intensity is to

the absolute velocity which it impresses instantaneously on every

particle over which it passes, as the space occupied by the con-

densed air before condensation to its loss of space by condensa-

tion.

The truth of this proposition may be drawn as a corollary

from what was shown in describing the formation of a wave in

a tube, and therefore we need to give no further proof of it here.

Fig. 2.

Let be fig. 2 be a column of air of the density and elastic force

due to the pressure of the atmosphere, and whose length is equal

to the height of a homogeneous atmosphere. Let this column
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IH- extended 1,, any <
I i -f aiicc

ftj
ami |.-t | fflWC who*r ,-1

force OZOeedl tin- preure of th.- atm..-phen n, i tti,,

as <i,- eXGeedl /" pa-- o\er the column -/'.

/V<7/. II. Tin- velo.-itx .,1 a \\a\c like thai ftbOTC described

will be to t he velocity uhich it impre--e- ,,ii the part ie|e-

which it pa > a- "- t. '/-

F<>r it i-e\ident thai -udi a wave will con, len-e t In- part ie|c-

in tin- ratio of // to A/-, ami t herd . .1 . t !i-
-|,a

... < upic.l I,-, tin-

|inrticlc before condensation \sill ! t.. th.-ir lotoiof

l)y OOndeBMtion M OC t' "/, ami tlM-n-t'..n- l.\
1'roj,. I tin-

velocity of the wave U to that uhich it im|r----s \\ t he part id.--

as nr to <tl>.

I'm/*. III. 'I'hc velocity ini|i-e>sei ii|
the particle* i* thai

which a falling lly would acquire in the time in which the

wave passes over <il>.

For (hirinir that time thee\ccof elastic force \\hi<-h i- a

constant force ami which i> e<|iial to the wci-jhi of the air in <///

is acting upon that air. ami therefore mu>t impart to it the -am.

velocity as it would acquire ly falling durinir the -aine time;

and that velocity i> the same a> would have hecii acjuired in the

same time ly any other falling lody.

/V<v. IV. The velocity of the \va\e i> that which a falling

lutdy will ac(|iiirc in the time in which the wave run- o\er

For it was shown in Prop. Ill that in the time of running o\ !

<i!> a falling lody would acquire the velocity which the\\a\

impresses upon the particles, and since ly Prop. II that velocity
is to the velocity of the wave as <il> to dC, it folh.w> that in the

time of runnino- over <i<- the falling hody will acquire the velocity

of the wa\ e.

Prof*. V. The velocity of a wave is that which a hody will

acquire by falling through a height which e\c--d- half tin-

height of a homogeneous atmosphere in the same ratio as the

elastic force of the wave exceeds the elastic force of the medium

in which the wave is propagated.
It was shown in the last proposition that in the time in which

the wave runs over //< a falling body would acquire the velocity

of the wave, and since the mean velocity of falling hodio is half

their final velocity, it follows that in the time in which the ua\<

runs over m\ the falling body in acquiring the velocity of the

wave, will have fallen through a space equal to half </<; ami

since 1) c is by construction equal to the height of a homogeneous



atmosphere, and since a c exceeds b c in the ratio in which the

elastic force of the wave exceeds that of the air, it follows that

half of a c exceeds half the height of a homogeneous atmosphere
in the same ratio. Therefore the velocity of a sonorous wave
is that which a body will acquire in falling through a height
which exceeds half the height of a homogeneous atmosphere in

the same ratio as that in wrhich the elastic force of the wave

exceeds the elastic force of the medium in which the wave is

propagated.
Thus we have a general solution of the problem relating to the

propagation of sound a solution limited by no conditions.

From this solution it appears that an excess of elastic force above

that of the medium is essential to the existence of a wave ; ami

also that the greater this excess, the greater will be the velocity of
the icave.

If we apply this general solution to the particular case of a

wave whose intensity (or excess of elastic force), is so small that

its effect on the velocity is inappreciable, we shall find the

velocity of such a wave to be that which is due to half the

height of a homogeneous atmosphere. This is the velocity found

by Newton and those wrho succeeded him in this investigation,

all of whom, in consequence of their assumption of the gradual

acceleration of the particles, found it necessary to confine their

investigations to waves of this small intensity. It seems obvious

that a result thus obtained can be legitimately applied only to

such waves
;
but we iind that these scientists have regarded and

treated it as equally applicable to all waves. They maintain

that the velocity which a body acquires by falling through half

the height of a homogeneous atmosphere is the theoretical

velocity of all waves so far as their velocity depends on the laws

of Dynamics.
I think it may be shown how those scientists have been led to

this conclusion as a consequence of their acceptance of the theory

of gradual acceleration. It is evident that in a wave originated

and propagated by gradual acceleration (if such a wave can exist,

which I do not admit), the foremost particles can have only

an infinitesimal condensation, however dense the particles may be

furthest back. Now it appears both from the general solution

Ave have here given and from the more limited one given by

others, that particles of so small condensation can only transmit

their force from one to another with the velocitv due to half the
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height i.!' ;t hoiiio^eneou* at mo*phere : ami -inc- ;i

move no latter than its !' .i-t-iii"-r [.art iele- it would thence fol-

lo\\ that no wa\e \\ould ni"\e fa-ter than with the \e|.,cit\ due

to halt' the height of :i homo-jem-oii- at mo-ph-re. ami

qiiently that all fTftVefl ha\e Miat \ e|o,

We see then that it' \\c adopt the tin jradual

lion \\c ranm.t avn'nl tin- rniirliisinii that all -oiimU ha\- tin-

-amc velocity. Hut \\v ^liall -< lm\\ ali-unl .in- t)i- |---ui-

\\liicli \\'c should lie driven l\ ac-c).t iii- tin- i-iiiirlu-jnn that all

\\ iivc- have the -ame \eh.city.

According to I'rolY^-or I'eirce the t he. .ret i-al \e|..<-it

sound is !!<', 1'eet per (<<. nd, an<l it actual nr ol-er\e.| \ei

is lo'in feet per second (l*rin-e on Sound, page 91), 'l'h

dilVerence hetweeii t hese \clocit ie> \v:i- a my-ter\ t. matin-ma

ticians from the time of Newton to that of Laplace. Laplace

vii-m-sted that the diiVereiice \va^ due t.. the heat evolved l.\

coixlensation. This MIL^CS! ion, comiiiLC from -^o hii_r h a -our-e.

has l>een accepted by mo>t mathematician^ without examina-

tion as an adequate supplement t< tin- theor\ .if Ne\\tin. and

sufficient to i-econcile tlie results of theor\ witlithos,- ,,l ..I.M-r

vation. Otliers wlio have investigated the <jue>ti(n have

douhleil its sufficiency for that purpose. l'rofYnr I'eirce. after

i-emarkiiiLi- that the heat evolved 1>\ >u<ldcn condensation ////// h<-

much greater than we should expect in the ea*e of \\r]i small

condensations as an- contemplated in the theory of sound.

accepts \\-ith manifest misoi\in:s and reluctance the sufficiency

of Laplace's explanation, and employs it to bridge over this

otherwise impassable ijulf in the theory of the propagation of

sound.

Now let us see how much the temperature of a wave must be

raided by evolved heat to increase its velocity from !!'' t. lo'jn

feet pel
1 second. According to Professor Peirce the velocity of

sound increases <))(> feet per second for every decree of temper-

ature above :*2 Fahrenheit. Then by the formula

0-96

we find that 1SJ.L'"> deu'rees is the elevation of temperature

required to increase the velocity of a wave from Ulti to 1090 feet

per second. And since under the theory of gradual acceleration

the front of every wave must consist of {.articles only intinite>i-
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mally condensed, and since this part must have its velocity
increased as much as any other part, it would follow that an in-

finitesimal condensation Avould cause an evolution of heat that

would raise the temperature 181 degrees ! It would further fol-

low that we could not converse with a friend, even in the mildest

whispers, without pouring into his ears waves of a temperature
of 181 -|- 32= 2 13 degrees, or hotter than boiling water ! ! More-

over it would also follow that upon the slightest sudden change
of barometric pressure we should be immersed in air of a temper-
ature of 213 degrees ! !

Such are some of the absurd conclusions which follow -from the

doctrine of gradual acceleration supplemented by evolved heat.

The doctrine that the particles which constitute the wave

have all their motion impressed upon them instantaneously, leads

to no such absurd conclusions and presents no such hiatus to be

bridged over by evolved heat or otherwise; as we will now

attempt to show.

It follows from our solution of the problem of the propagation
of sound that the intensity of the wave (an item which was elim-

nated in the old theory), is a quantity not to be disregarded in

determining the velocity of sonorous waxes. Let us see if this

item, when given its proper place in the investigation, is not

sufficient to effect a reconciliation between the results of theory
and those of observation ; and that without calling in the aid of

evolved heat.

Prof. Peirce gives 916 feet per second as the theoretic and 1090

as the observed velocity of sound. But we should here note the

significant fact that 916 is the computed velocity of a wave so

weak that its intensity may be regarded as cipher; while 1090

is the observed velocity of the report of a cannon, one of the

most intense sounds known to us. According to both the old

and the new theory, 916 is the theoretic velocity of the weaker

of these waves. If then we can show that under the new theory
1090 is also the theoretic velocity of the report of a cannon, we
shall have effected a full reconciliation between theory and ob-

servation without calling in the aid of evolved heat. In order

to do this the question to be solved is this, is the intensity of

the wave produced by the discharge of a cannon sufficient to

account for the difference between 916, the velocity of a wave

whose intensity is regarded as cipher, and 1090, the observed

velocity of the report of a cannon. If we knew what is the



intensity of the WaVC SO produced NTC -..iill n-adil\ a-.-ertain

whether it i- -utlicient for thi- purpo-,-; but a- u e ha\ no

of learning thi-, let u- in.juir<- u hat tin- inten-it\ ,,} >u,-|, ;i

must be in order that it- \e|,,cit\ ma\ I..- L090 fed per
Kcfcrrin- fco ti-. _' u hen- /><

represent! tin- h.-i-jlit and den-ity of

:i honiogrm -
atnio-pherc ami "A tin- inten-it\ of tin- \\a\e. tin-

<|iie-tion to In- ->l\cd i-, \\hat mu-t In- tin- i //< u hen

the velocity dae to half tin- height be ii 916 feet, and that lm-

to half the height CtC i- M'.H. feet? H\ an obvkmi |.ror.->?.,
u hii-h

need not le ^i\cn in detail here, it \sill IM- found that nl, mu-t in

such ease he ahoiit
,',/,,

of //; that i-. thed<-n-it\ of th-

mu>t exceed the deiivit\ ..f the air l\ about 11 |.er eent.

Tliat the density of the air in front of the mu//le of a i-amion

is upon its discharge inereasi-d a- mueh a- II jn-r cent., and

often very much more than II j.er cent .. t here can hem.douht.

It is evident that t he decree of that condensation jx not ai

the same, but must depend on \arioii> considerations, Slid

whether the cannon be charged \\ it h -h<t. -whet her theuad 1 M -

so compressed a> to retjuire ^reat force to drive it out, the

Icno-th of the piece, the ijiiantity ami Duality of tlie pouder.
t^'c. In the records of the various velocitie- .l>-er\cd 110 refer-

ence is made to t IK-SI- considcrat ion>. IVof. I'eirce ^\\^ IOD

the mean of seven selected observations, none of which varied

materially from 1090. Hut there are many other ol>-ervat ion-

recorded giving observed velocities much higher than those which

he selected. These are rejected by Prof. Peirce a- unreliable; for

what reason is not apparent. For my own part I doubt not that

waves are often produced by the discharge of cannon who-.-

intensity is such that under our theory their velocity of pn>|

tion would far exceed KWo feet per >ecoiid. If this be -
-. \\ r

shall need no aid from evolved heat until, in the case of any

particular wave it can be shown that its velocity is greater than

under our theory can be due to its intensity. It may be a-ked

here whether I reject the notion that the velocity of sound U

increased by evolved heat? I an-wer that I do not; but I think

that under the old theory the effect of heat has been greatly

overrated. I think its effect must be in proportion to the .juan-

tity of heat evolved, and that the quantity evolved must be in

proportion to the degree of condensation. I think therefore that

when the condensation is infinitesimal the effect of the evolved

heat will be inappreciable. If this be so. then, whenever a

8
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method shall be devised whereby we may find by experiment the

velocity of waves of infinitesimal condensation, we shall find it

not to differ materially from that which a body will acquire by
falling through half the height of a homogeneous atmosphere;

the velocity found by Newton.

Those who have investigated the propagation of sound under

the old theory seem to have supposed that the evolved heat lias

a thermo-dynamical effect; that it is converted into mechanical

power and so acts mechanically to increase the velocity of sound
;

but it can have no such action, for the supposed force of the heat

is expended within and upon the very matter which is supposed
to be propelled by it, and therefore acts backward as much as

forward. A vessel sails no faster because she is on fire in her

hold; the earth revolves no faster upon its axis because of a fire

on its surface or within it; the heat of the fire under the boiler,

or of the steam within it does nothing to propel a steamer, until,

through the intervention of machinery it is made to react upon
matter without. Archimedes could move the world, but he must

have something outside of the world for his lever to react upon.
In the case of the heated wave there is nothing outside of the

wave for the heat to react upon, and therefore it can have no

mechanical effect to increase its velocity. The mechanical power
of a wave to perform the work of reproducing itself is given to

it by the power which originates the wave, and it can neither

be increased or diminished by the heat evolved by condensation.

What then is the )no<hix oftei'dndi in which the velocity of a

wave is increased by evolved heat? It is simply by increasing
the ratio of the elastic force of the wave to the density of the

medium in which it is propagated. The elastic force of the <r<n'(-

is increased wrhile the density of the medium is unchanged. The

result of this change of ratio is that the velocity imparted to the

particles by the wave is diminished, while the number of parti-

cles acted upon in a given time is ht<-reased in the same ratio, so

that the amount of mechanical work performed is neither in-

creased or diminished by the evolved heat.

In the book published a few years since, entitled,
" The Cor-

relation of Forces" it was stated that the eminent German scientist

Mayer had deduced the mechanical equivalent of heat from the

velocity of sound; and with a result coinciding very nearly with

the equivalent found in other ways. This statement was appar-

ently regarded 'by the author as being highly confirmatory of



tin- -loci rim- of hi-, book. This comput at ion by Mayer, however,
could only be founded <>n the a--umpt ion that I.

t-nlltj in increa*inr tin- velocity of -oiind: an. I t! it i-.

evident 1'roin what ha- ht-.-n -ho\vn that what- r ground
the doctrine of the correlation .!' force* ma\ have toret upon, it

can derive n> legitimate -upport fn.ni thi- --oin put at ion
l.y Mayer.

\\'c have another example of a -iniilar mi-take in the i.

announcement that anot her -cient i-t ha- deduced the \ e|o.-r

sound from the mechanical equivalent of heat.

I liad intended loprocnt here -e\ eral ot her int ere-t iii-_( c.m-

cliisionv at which 1 had arrived on thi- -ubject. hut I forbear,

leM I should extend thi- paper to toe, ._rreat length: and I paftg

(hem by with the less reluctance, le<-au-e anyone wlio will be

likely to take the trouble to read thi- paper will be able him-elf

to arrive at the same results.

In conclusion I think proper to mention the fact that i

than thirty years since I cont ribnted to tin- .Journal of Science

an article* in which I demonstrated in a manner .juite different

from that pursued in thU article, but not less conclusive, that all

waves have not the same velocity, but that their veloeiti,-- vary

with their intensity; and that the velocity of a wave was that

which a body would acquire by falling through a hci^l'

than half the height of a homogeneous atmosphere in the -aine

ratio as the density of the wave exceeds the density of the

medium in which it is propagated: results preci-ely -imilar to

those deduced in this article.

That article seems to have attracted little or no attention: for

up to the present moment all scientific periodicals continue to

speak of the velocity of sound as if it were a quantity determin-

ate and invariable, sought for, but not yet ascertained with

precision and certainty; and scientists, by ingenious theoretical

and experimental devices still continue to search for the mythical

number as the Alchemists did for the Philosopher's stone. Pos-

sibly this article may have as little effect as the former to bring

those labors to an early close: but however this may be I cannot

doubt that sooner or later the fact will be recognized and

accepted, that sound waves do not all mo\ e with one and the

same velocity; and that the difference in their velocities is due

chiefly to the difference in the intensities of the forces by which

* Journal of Science, second series, vol. v. \\\\^- :;T'J. The second of the pre-

ceding articles.
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they are respectively originated, and only in a much smaller

degree to the elevation of the temperature of the wave by com-

pression : and it will be seen that we have no need to resort to

the theory of Laplace to account for the difference between the

velocity of the wave formed by the report of a cannon and that

of a wave of infinitesimal intensity.



I/- //// principal objections which /><< been

in tin last cf (he fvregofag

< >UJECTION I.

IN the foregoing articles it is maintained that sound wave*

which ditl'er in intensity arc not propagated with tin- -aim-

velocity. To this doctrine it lias hem objected that \vli-

tune is played at a great distance- from the hearer, tin- note-

reach his ear in regular order and in their proper M-ijueiiee i n

respect to time; which, it i- alleged, would not he the -a-e if

the waves moved with different velocities. Let u> inquire into

the force of this objection.

If we consider the minute space- through which -tring>, reed-.

etc., vibrate in giving origin to musical -oirnd-. and the limited

number of vibrations made per second, \\hate\er may be the

pitch, we shall not be able to make out that the velocity of tin-

vibrating string or reed is in any case greater than one or two

feet per second. In the computation upon which we are enter-

ing, the greater we assume that velocity to he the more will the

result favor the objection; and as we can afford to he very liberal

to the objector we will assume that the- great c>t velocity that

can pertain to any vibrating body that sends forth musical note-.

may be 10 feet per second. The vibrating body imparts to the

air its own velocity ; and, from what is shown in Article V., it

follows that in putting air in motion with a velocity of lo feet

per second, its density will be increased only so far a-

the normal density by about one per cent. Now suppose that in

the weakest waves that can transmit an audible sound there i*. a

condensation of one-tenth as much : then the densities of the

strongest and weakest sonorous waves that can he produced by
musical instruments will be to each other as lol to lou-i. and

their velocities of propagation as ^/10l to
,y/100'l. Consequently,

if two waves, thus differing in density, be originated simulta-

neously at a distance of 1000 feet from the observer, while the
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denser wave runs over the 1000 feet, the less dense wave will

run over v/100
'

1 X 10QO
=995-534 feet, and will then be behind

A/101

the other 1000 995'534=4-466 feet in distance
;
and in thne

(if the velocity of the denser wave is 1000 feet per second),

=Tj4~rr of a second.
995-534-T-4-466

Thus it appears that two waves having as great a difference of

intensity as can exist between any two waves produced by musi-

cal instruments, if originated simultaneously at the same place

and thence propagated 1000 feet, will then be separated by 4'466

feet in space and by ^fa of a second in time.

But the impression of a musical note on the ear is not pro-

duced by a single wave, but by a series or group of waves
;
occu-

pying in their production seldom or never less than ^ of a

second, and therefore extending through a space of *gj{Q
= 50

feet. Consequently the two groups of waves, of which the single

waves we have been considering respectively constitute the first,

overlap each other and are coincident for more than ^ of their

length.

That displacements as great as that above considered do not

perceptibly impair the regularity and harmony of a tune is

evident from the fact that in every musical performance however

perfect, there are constantly recurring deviations from the true

time of the tune to the extent of not less than ^J^ of a second ;

and such deviations must produce displacements of like extent,

even though we assume that the velocities of all waves are pre-

cisely equal.

Again in the .case of a number of musicians performing in

concert, although we should assume that all waves move wilh

the same velocity and that there is not the slightest deviation

from the true time, yet if the difference in the distances of the

hearer from the respective performers should amount to 4 '466

feet say 4| feet, there would result an equal displacement of

the notes. I think it will not be claimed that the most fastidious

critic of musical performances could perceive a distortion of the

music in such a case.

Our conclusion then, is that the apparent regularity in the

order and chronic sequence of the notes of a tune, performed at

any distance from which it can be heard, does not go to show

that all sound waves are propagated with the same velocity.
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ThoM- who have hereto!',, re attempted toin\ he law of the

propagation !' oimd have aKsuiiH'<l that a -on. .rm- \v a\ < . .n-i-t -

of contiguous particles of <- ( .mpiv--ed air u bott incre.t-ed den-it \

U greateftl
at near the Centre <>f tin- \\a\e. lini'mMi'mi: ''

t.i cipher at tin- front ami rear, ami whose part irle- iv-peei

ha\e tin- vrliM-it'n- ilm- t. tin- n->|n-rt i\r fun Iiv u lii-li

have been oompresfted; and they hmve illnstrmted iln-ir \i<-\\

iiatun- an<l cniit it ill imi 'f a \sa\c li\ a diagram c<n-t ruct <-.| s U l-

>tanti:illy as follow^; \\lu-n- Al i- a line of part id<- OTr \\liidt

A IS

r '/

a \vavr i^
jia^^in.ii'

from A to |; r//i^ tlic lirradth of tin- \\

and an ordinatt- from tin- cur\c alo\r to any point ii, ! i.

sents the oompressing force and velocity of the particle at that

point.

In the fifth of the preceding artirle> a <oiioroii. \\a\e i- defined

a^ consistinii- of contiguous pai'ticles ,f air, all equally emn-

pre-M-d and havinir the same velociu. Such a wave, shown \t\

a diagram constructed on the same plan as before, would >lm\\

tlie wave in the form presented on the line CD: with a lnri-

y.ontal line above and precijiitoiis termini in front and rear.

C_ i~ H__ |)

According to the view of a wave as presented on A U. the jui-

escetit particles of air as they are successively encountered by
the advancing wave commence their motion with an infinitesimal

velocity which is augmented by insensible degrees, n-aching its

maximum at the centre of the wave; but a wave of Mich form as

is shown on CD requires the full maximum velocity to In- imparted
to the quiescent particles instantaneously.
To this last view of a wave the objection is made that a

finite velocity cannot lc impressed upon matter ///>/, //,/,/,
,,//>/,/.

In making answer to this objection it is proper to sty at the

outset that the term instantaneously, as used in the freir<inir

articles, does not import an absolute mi/nliLm of time. It is

employed in its more common sense, to indicate a time shorter

than any assignable time. Thus understood the view objected
to is in perfect harmony with that universal law of dynami

FT x .MV
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or, The product of force and time is as the product of mass and

velocity.

For, let V represent the absolute velocity imparted to the

particles of air encountered by the wave
; let F represent the

constant force required to overcome the inertia of those particles

in being put in motion with the velocity V ;
and let M be the

mass of air put in motion with that velocity in any time, T. Then
F will be as V, and M will be as T, and consequently if we make
M infinitesimal, T will be an infinitesimal of the same order. We
have then, a finite velocity, V, imparted by a finite force, F, to

an infinitesimal mass, M, in an infinitesimal time, T; thus sus-

taining the view which was objected to. In this case I regard the

infinitesimal mass as taking the velocity V, without first passing

through the smaller velocities that may be assigned between V
and cipher; and I know of no law of nature which precludes the as-

sumption that such is the fact. If, however, the objector thinks that

even in this case the velocity V, is acquired by gradual acceleration

and can conceive how this gradual process can be carried through
in an infinitesimal time of the highest order and within the limits

of a space equally minute, such a view will not conflict with the

views maintained in the fifth article nor call for any modification

of the form of the wave as presented on the line CD.

OBJECTION III.

It has been objected to that part of the fifth article where I

have estimated the extent to which the temperature of a wave

must be raised by evolved heat, in order that its velocity may
be increased from 916 to 1090 feet per second, that I have

assumed that an elevation of the temperature of the wave one

degree by evolved heat will have no more effect to increase the

velocity of the wave than an elevation of the temperature of the

medium one degree ;
it being alleged by the objector that one

degree of heat, confined to, and acting wholly within the wave

itself must have a vastly greater effect to increase the velocity

of the wave than the same amount of heat diffused throughout
the medium.

This objection seems to ignore the distinction between degree

of heat and quantity of heat : but 1 forbear to assume that the

objector has overlooked a distinction so wide and so obvious.



si

( )l her thin ifx bdin_r jiial,
t he \ dodty of a u :i\ i- din-rtly

flu- >.|iian- root of it- da-tic force and in \ er-e| \ M tin-

root ..I tin- -pecilic ._cravit\ of the medium in which it i- pn.pa

Liated. An ele\ at ion of t MII jx-rat ur.-. \\lictlicr !' tin- \save or of

llic medium, lia^ n< dVcct t<. incr-a-f t lie \d<.dt\ i tin- ua\-.

j.l 10 t':ir U it UIOreMei tin- rati. of tin- d:i-ti- fOTOfl "f tin-

\\a\c t.. th<-
v|

H -cili,- M-i-MvitN of tin- imdium. To d.-\at.- tin- tcrn-

urc of the teaVi iiKTcascs that ratio ly inn-

the wave, To elevate the temperature of th.- //,../.

that ratio ly -Iccrca-iiiLi tlic
-p.-cili.- _rra\it\ .!' rln-

imdium. Hence t )u- 'jiiotioii raided ly tin- olijector i>

i-.jual increment^ .!' t-m|M-rat ure in the two OMM r.- M lt in

incrcim'iit> ol' that ratio. I maintain that tin- dl'.-ct- ..f tin-

i-lc\ Mtion <>f temperature are |trecisd\ the xaim- in both r:t-

increax- that ratio, ami t( increa-e the velocity of the p

Kor an elevation of tlic t eni|>ei-at ure of the wave .;me (leLMv-e, by
increasino- the elastic force, ;ives to the air of the wave a ten-

dency to expand and reduce iN >jecitic uravity in the -aim- ratio

that the heat had increased its elastic force. An elevation of the

temperature of the medium one decree cause- it to expand and

reduce its spedtic o-ra\ ity in that same ratio. The effect there-

fore upon the velocity of the wave U the same in both OftMt,
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